Hydrodynamics of unsteady fish swimming and the effects of body size: comparing the flow fields of fish larvae and adults.
نویسندگان
چکیده
Zebra danios (Brachydanio rerio) swim in a burst-and-coast mode. Most swimming bouts consist of a single tail flick and a coasting phase, during which the fish keeps its body straight. When visualising the flow in a horizontal section through the wake, the effects of the flow regime become apparent in the structure of the wake. In a two-dimensional, medio-frontal view of the flow, larvae and adults shed two vortices at the tail during the burst phase. These vortices resemble a cross section through a large-core vortex ring: two vortex cores packed close together with the central flow directed away from the fish. This flow pattern can be observed in larvae (body length approximately 4 mm) at Reynolds numbers below 100 as well as in adult fish (body length approximately 35 mm) at Reynolds numbers above 1000. Larval vortices differ from those of adult zebra danios mainly in their relatively wider vortex cores (higher ratio of core radius to ring radius) and their lower vortex circulation. Both effects result from the increased importance of viscosity on larval flows. During the coasting phase, larval and adult flows again differ because of the changing importance of viscosity. The high viscosity of the water causes large vortical flows adjacent to the larva's body. These regions of high vorticity represent the huge body of water dragged along by the larva, and they cause the larva to stop almost immediately after thrust generation ceases. No such areas of high vorticity are visible adjacent to adult zebra danios performing a comparable swimming manoeuvre. The rapid decrease in vortex circulation and the severe reduction in the coasting distance due to viscous drag contribute to the high cost that larvae - unlike adult fish - face when using a burst-and-coast swimming style.
منابع مشابه
Simulation and optimization of live fish locomotion in a biomimetic robot fish
This paper presents simplified hydrodynamics model for a biomimetic robot fish based on quantitative morphological and kinematic parameters of crangiform fish. The motion of four Pangasius sanitwongsei with different length and swimming speed were recorded by the digital particle image velocimetry (DPIV) and image processing methods and optimal coefficients of the motion equations and appropria...
متن کاملThe effects of electromagnetic fields on fish
The objective of this paper is to survey the results of studies on the biological effects of electromagnetic fields on fish. First, the basic concepts of electromagnetism and electromagnetic spectrum and the importance of studying it in the case of fish are discussed. Then a summary of the results obtained on the effects of extremely low frequency electromagnetic fields (ELF-EMFs) and radiofreq...
متن کاملComputational hydrodynamics of animal swimming: boundary element method and three-dimensional vortex wake structure.
The slender body theory, lifting surface theories, and more recently panel methods and Navier-Stokes solvers have been used to study the hydrodynamics of fish swimming. This paper presents progress on swimming hydrodynamics using a boundary integral equation method (or boundary element method) based on potential flow model. The unsteady three-dimensional BEM code 3DynaFS that we developed and u...
متن کاملFlow patterns of larval fish: undulatory swimming in the intermediate flow regime.
Fish larvae, like many adult fish, swim by undulating their body. However, their body size and swimming speeds put them in the intermediate flow regime, where viscous and inertial forces both play an important role in the interaction between fish and water. To study the influence of the relatively high viscous forces compared with adult fish, we mapped the flow around swimming zebrafish (Danio ...
متن کاملAre fish less responsive to a flow stimulus when swimming?
Fish use the lateral line system to sense the water flow created by a predator's strike. Despite its potential importance to the survival of a diversity of species, it is unclear whether this ability becomes compromised when a fish swims. Therefore, the present study compared the behavioral responsiveness of swimming and motionless zebrafish (Danio rerio) larvae when exposed to the flow of a su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 203 Pt 2 شماره
صفحات -
تاریخ انتشار 2000